
THE KGS 1

DIGITAL COMPUTER



The K.G.S.1 digital computer performs simple calculations in binary arithmetic simulating the 
working of a full scale digital computer, although the actual calculations it can perform and the 
speed with which it performs them is strictly limited. In this computer a 1 digit is represented by a 
negative potential or a light on, and a 0 digit by zero potential or the light off.

The K.G.S.1 can conveniently be divided into three basic units: the control unit, the storage unit and
the calculating unit.

These three units are linked in two ways:
1 by a wire called the main bus which carries binary digits from one unit to the other, and
2 by four wires which are used to alter the state of relays in the storage and calculating units 

corresponding to the program being fed in.

THE STORAGE UNIT

The storage unit contains sixteen stores each of which can store a binary digit, and circuits (called 
the gating circuits) which enable any one of those stores to be connected to the calculating unit 
individually. The lights corresponding to the stores, showing whether they are on or off (i.e. storing 
a 1 or 0) are arranged in a square and for convenience are given letter-names s to z and s' to z' as in 
the diagram:

For the purposes of programming it is necessary to have names for the stores which are binary 
numbers, although these numbers infer nothing about what is stored in a particular store or the 
meaning of a digit stored there; they are just names for the stores which can be used to set the input 
relays A,B,C,D (for instance for store 1011 A,C and D would be set but not B), and these would be 
used to set corresponding relays in the gating circuits which would connect the store with that name
to the main bus. The name for any store can be found easily from the diagram by taking the two 
digits at the end of the horizontal line it is in as the first two digits of its name, and two for the 



vertical line for the last two;  for example, y would be 0110; x' would be 1101.

THE CALCULATING UNIT

This unit can accept two binary digits and perform one of a number of different calculations on 
them depending on the state of four relays A2,B2,C2,D2 in the construction of its circuit. The two 
input binary digits p and q set the two relays P and Q. For example, if p=1 and q=0 then the P relay 
is set but the Q relay stays relaxed.

When the required circuit has been selected by activating the right combination of A,B,C,D then the
output r along the main bus will be determined by the state of the P and Q relays.

Just as with the storage unit, the state of the relays A,B,C,D depends on the program being fed into 
the control unit. Suppose, for example, the input to the control unit at a particular stage in the 
program consists of A and B off and C and D set and this is then transferred to the A,B,C,D relays 
of the calculator. It is convenient to express this input as the four-digit binary number 0011 although
it is an instruction to the computer. The calculating unit can now perform one of its eight basic 
functions, the 00-- and 01-- programs (10-- and 11-- programs will be dealt with later). To see what 
it does we can write down the truth table for the inputs p and q and output r:

This 0011 program will be recognised as that for the 'put down' digit for addition. The tables for 
other inputs are given separately, although the table for the 0000 program is put down since it is 
relevant to the later discussion as the 'put down' digit for multiplication or the carry digit for 
addition.

THE CONTROL UNIT AND OPERATION OF THE COMPUTER

This unit is based around a rotary switch which has six stable states and turns from one state to the 
next every time it is given a negative potential. Using this switch it has been possible to connect the 
storage unit, the calculating unit and the program input in six distinct ways. Because of this the 
input has to be translated in different ways depending on which state the rotary switch is in. The 
program is broken down into cycles of six stages corresponding  to each of the states (the data has 
been set into the stores before running the program) as follows:

STAGE 1 The program input a,b,c,d is connected to the storage unit but not to the calculating unit 
and the main bus travels from the storage unit to the P relay in the calculating unit. This means that 
the input a,b,c,d determines the particular store which is to be connected with the calculating unit 
and the state of this store determines the state of the P relay.

STAGE 2 This is almost the same as stage 1, except that the main bus now connects a store to the Q
relay of the calculating unit so that the input a,b,c,d now determines the store which is to be linked 
to the Q relay.

STAGE 3 The input a,b,c,d is now connected to the calculating unit and not to the storage unit so 
that the input determines which calculation the computer will make.



STAGE 4 The input a,b,c,d is reconnected to the storage unit and disconnected from the calculating 
unit while the main bus now connects the output from the calculating unit to the storage unit. The 
affect of this is that the input determines into which store the result of the calculation shall go.

STAGE 5 This stage is mainly intended for use with supplementary instructions later. At present a 
0000 input can be used each time. Also during this stage the calculating unit is reset ready for the 
next cycle.

STAGE 6 The input determines a store which will be emptied (i.e. reduced to storing 0). This is 
normally the store to be used for the result of the next calculation, although for the last cycle it can 
be any store not in use.

The computer is operated by a number of push-switches. Any store can be set (i.e. made to store a 1 
digit) by pressing the corresponding switch in the set of sixteen, or emptied (made to store a 0 digit)
by doing this while switch H is held down. The switch L controls the rotary switch (uniselector) 
which moves round one position each time L is pressed and so can be moved to the starting position
for setting data. The program can then be run by pressing the required combination of A,B,C and D 
according to the four-digit input code in the program then pressing L, then the next input code then 
L, and so on. A,B,C and D do not need to be held down as they set and are reset when L is released.

To see how a calculation is performed the program for the addition of two binary digits n1 and n2 to 
give n”n' is given below in detail. The contents of the first eight stores (0000 to 0111, s to z) are 
given; the other stores are not used in this program.

Data input n1 -> s (0000)
n2 -> t (0001)

input contents of stores

cycle stage code details of program s t u v w x y z

1 1 0000 n1 -> calc. unit n1 n2 0 0 0 0 0 0

2 0001 n2 -> calc. unit n1 n2 0 0 0 0 0 0

3 0011 put down digit n' for n1+n2 is calculated n1 n2 0 0 0 0 0 0

4 0111 n' stored in z n1 n2 0 0 0 0 0 n'

5 0000 reset n1 n2 0 0 0 0 0 n'

6 0110 store y is emptied n1 n2 0 0 0 0 0 n'

2 1 0000 n1 -> calc. unit n1 n2 0 0 0 0 0 n'

2 0001 n2 -> calc. unit n1 n2 0 0 0 0 0 n'

3 0000 carry digit n” for n1+n2 is calculated n1 n2 0 0 0 0 0 n'

4 0110 n” stored in y n1 n2 0 0 0 0 n” n'

5 0000 reset n1 n2 0 0 0 0 n” n'

6 0011 store v is emptied n1 n2 0 0 0 0 n” n'

If larger numbers are added, four cycles are needed for each column except the first and the last as 
the carry digit from the previous column has to be added in. The first two cycles would add the first 
two digits for put down and carry; the next two would then add this put down digit to the third digit 
for put down and carry. The results from both carry calculations can be put into the same store as 



they cannot both be ones.

For subtraction (A-B) A and B being in binary notation it is easiest to regard this as A plus the true 
complement of B. The true complement of a number is formed by changing all of the 0s to 1s and 
vice versa, and then adding one to the result.

In the computer it is necessary to find calculations which give, for the units column, the put and 
carry digits for 1+p+q (where q means not q, i.e. 1 if q is 0, 0 if 1), these are calculations 0011 for 
put and 0110 for carry. For the other columns the calculations for put and carry for p+q are 0100 
and 0001 respectively. The carry digits from the previous column can then be added as in the 
addition program using calculations 0011 and 0000.

THREE DIGIT CALCULATIONS

The programs so far described would be considerably simplified if calculations could be performed 
using three digits at a time (in many cases reducing four cycles to two). As increasing the number of
stages per cycle would create other difficulties the calculating unit was extended so that 10-- and 
11-- calculations would use three digits, the third digit always being that in store z'. However, this 
only reduced the four cycles to three as the result from a three-digit calculation could not itself be 
fed to z' ready for the next calculation. So the calculating unit was altered once more so that 10-- 
calculations used y'. This means that for normal addition or subtraction the carry digits can be put 
alternately into y' and z'.

The three-digit calculations are used as follows; the method of using Y' for the third digit will be 
given, with the difference for Z' in the brackets. When a 10-- (11--) program is in stage 3, if Y' (Z') 
is storing a 0, then the result will be the same as for the corresponding 00-- calculation; if Y' (Z') is 
storing a 1, then the result will be as shown in the relevant table of the last four. For the put and 
carry digits in addition and the carry digits in subtraction, these are the correct results if there is a 
carry of 1 from the previous column It should be noted that there are no three-digit calculations 
corresponding to the 01-- programs and so none for the “put” digit in subtraction.

As an example a program to add two numbers three digits long to produce the four-digit result is 
given. The stores used for the data and the result are shown by:

Any combination of stores could be used, but this method has the two original numbers on the first 
two rows of lights and their sum in the logical position on the next row.

CYCLE STAGE INPUT CODE

1 1 0011

2 0111

3 0011 FIRST PUT DIGIT TO V'

4 1011

5 0000



CYCLE STAGE INPUT CODE

6 1111

2 1 0011

2 0111

3 0000 FIRST CARRY DIGIT TO Z'

4 1111

5 0000

6 1010

3 1 0010

2 0110

3 1111 SECOND PUT TO U' (Using carry in Z')

4 1010

5 0000

6 1110

4 1 0010

2 0110

3 1100 SECOND CARRY TO Y' (Using carry in Z')

4 1110

5 0000

6 1001

5 1 0001

2 1010

3 1011 THIRD PUT TO T' (Using carry in Y')

4 1001

5 0000

6 1000

6 1 0001

2 0101

3 1000 THIRD CARRY TO S' (Using carry in Y')

4 1000

5 0000

6 1110

Calculations Using Adder

The computer also possesses an adder which will automatically add up any binary digits sent to it. 
This can considerably simplify certain calculations. For instance, a program to multiply two three-
digit binary numbers would require 9 cycles to multiply the various digits; it would also require a 
further 13 cycles to add the resultant digits to produce the final answer. With automatic addition the 
length of the process is reduced from 22 cycles to 9.



When the adder is in use, it must be decided what the result of the calculation represents. For 
example, if the “4's” digit of one number has been multiplied by the “2's” digit of another, the resut 
of the calculation should be fed to the adder as an 8. The power of two which is to be fed to the 
adder is written in binary, and this is the input code a b c d for stage four. In this case, 8 is two to the
power 3; 3 is 11 in binary; so the input code for stage four is 0011. Any power of two up to 2 to the 
fifteenth can be fed to the adder. The maximum capacity of the adder is (217-1).

To change over so that the results of calculations are sent to the adder instead of the stores, stage 
five of the cycle has to be used for the first time. Input code 0010 in stage five sets the computer so 
that in all subsequent calculations the result is sent to the adder instead of the stores. Input code 
0011 in stage five resets this so that results are sent to the stores again. If the result of the first 
calculation in the program has to be sent to the adder, this must be left to the second cycle, the first 
cycle containing a dummy calculation (see example) and 0010 in stage five. If the adder is in use at 
the end of the program, 0011 should be set in stage five of the last cycle to reset for other programs. 
An example is given of a program to multiply a three-digit binary number by a two-digit binary 
number with the result in the adder. The result of the calculation in the first cycle is the same as the 
digit already in store S (0000) and this is fed to store S so that the calculation has no effect. Cycles 
2,3 and 4 multiply the digits of the first number by the units digit of the second; cycles 5,6 and 7 by 
the “2's” digit of the second. The store reset in stage 6 each time is S (0000) as this store is not for 
use in the program.









From original Cyclostyled on foolscap, approx 1970

Re-keyed nib 2016-11-18

That multiplication program, written out is:

            t  u  v
               y  z
    ----------------
            3  2  1
         6  5  4
    ----------------
      w  s' t' u' v'

1 v  z  putX        v'     the digit 1, result LSB
2    v  y  putX        w'     the digit 4
3    u  z  putX        x'     the digit 2
4    w' x' put+        u'     put digit from 2+4
5    w' x' carry+      y'     carry digit from 2+4 saved
6    u  y  putX        w'     the digit 5
7    t  z  putX        x'     the digit 3
8    w' x' put+&y'     t'     put digit from 5+3 and saved carry
9    w' x' carry+&y'   z'     carry digit from 5+3 and saved carry
10   t  y  putX        w'     the digit 6
11   w' z' put+        s'     put digit from 6 and saved carry
12   w' z' carry+      w      carry digit from 6 and saved carry

So it uses w' x' y' and z' as working store (14 of the 16 available, only s and x free), y' in its magic 
mode to perform a 3-input function.

Last edit nib 2017-05-08


